Prisource electronicsPrisource electronics
  • About us
  • Products
  • News
  • Certification
  • FAQ
  • Contact
  • Language
    • English
    • 日本語
  • FAQ - Prisource Electronic Plant
  • Custom Transformers Introduction
  • What is transformer and how it works?
  • Transformer Basics
  • Transformer Construction
  • What is a step up and step down transformer?
  • Transformer Loading
  • Multiple Winding Transformers
  • The Current Transformer
  • Types of Transformer
  • What is a Common Mode Choke?
  • How Common Mode Chokes Work ?
  • What is a Choke Coil?
  • Common modes and differential modes
  • Types of Transformer
FAQ
  1. Home
  2. Transformer Loading

Transformer Loading

In the previous transformer tutorials, we have assumed that the transformer is ideal, that is one in which there are no core losses or copper losses in the transformers windings. However, in real world transformers there will always be losses associated with the transformers loading as the transformer is put “on-load”. But what do we mean by: Transformer Loading.

Well first let’s look at what happens to a transformer when it is in this “no-load” condition, that is with no electrical load connected to its secondary winding and therefore no secondary current flowing.

A transformer is said to be on “no-load” when its secondary side winding is open circuited, in other words, nothing is attached and the transformer loading is zero. When an AC sinusoidal supply is connected to the primary winding of a transformer, a small current, I will flow through the primary coil winding due to the presence of the primary supply voltage.

With the secondary circuit open, nothing connected a back EMF along with the primary winding resistance acts to limit the flow of this primary current. Obviously, this no-load primary current ( Io ) must be sufficient to maintain enough magnetic field to produce the required back emf. Consider the circuit below.

 

Transformer “No-load” Condition

The ammeter above will indicate a small current flowing through the primary winding even though the secondary circuit is open circuited. This no-load primary current is made up of the following two components:

  • An in-phase current, IE which supplies the core losses (eddy current and hysteresis).
  • A small current, IM at 90o to the voltage which sets up the magnetic flux.

 Note that this no-load primary current, Io is very small compared to the transformers normal full-load current. Also due to the iron losses present in the core as well as a small amount of copper losses in the primary winding, Io does not lag behind the supply voltage, Vp by exactly 90o, ( cosφ = 0 ), there will be some small phase angle difference.

 

Combining Transformer Impedances

In order to move a resistance from one side of the transformer to the other, we must first multiply them by the square of the turns ratio, ( Turns Ratio2 ) in our calculations. So for example, to move a resistance of 2Ω from one side to the other in a transformer that has a turns ratio of  8:1 will have a new resistive value of: 2 x 82 = 128Ω’s.

Note that if you move a resistance from a higher voltage side the new resistance value will increase and if you move the resistance from a lower voltage side its new value will decrease. This applies to the load resistance and reactance as well.

 

Transformer Voltage Regulation

The voltage regulation of a transformer is defined as the change in secondary terminal voltage when the transformer loading is at its maximum, i.e. full-load applied while the primary supply voltage is held constant. Regulation determines the voltage drop (or increase) that occurs inside the transformer as the load voltage becomes too low as a result of the transformers loading being to high which therefore affects its performance and efficiency.

Voltage regulation is expressed as a percentage (or per unit) of the no-load voltage. Then if E represents the no-load secondary voltage and V represents the full-load secondary voltage, the percentage regulation of a transformer is given as:

So for example, a transformer delivers 100 volts at no-load and the voltage drops to 95 volts at full load, the regulation would be 5%. The value of E – V will depend upon the internal impedance of the winding which includes its resistance, R and more significantly its AC reactance X, the current and the phase angle.

Also voltage regulation generally increases as the power factor of the load becomes more lagging (inductive). Voltage regulation with regards to the transformer loading can be either positive or negative in value, that is with the no-load voltage as reference, the change down in regulation as the load is applied, or with the full-load as reference and the change up in regulation as the load is reduced or removed.

In general, the regulation of the core type transformer when the transformer loading is high is not as good as the shell type transformer. This is because the shell type transformer has better flux distribution due to the interlacing of the coil windings.

In the next tutorial about Transformers we will look at the Multiple Winding Transformer which has more than one primary winding or more than one secondary winding and see how we can connect two or more secondary windings together in order to supply more voltage or more current to the connected load.

  • Choke Coil Manufacturer|
  • Common Mode Choke Supplier|
  • Custom Electric Transformers|
  • All Products|
  • Product Certifications|
  • Choke Coil/Transformers Quiz
Best electrical transformer manufacturer, supplier.   
Copyright © 2015 PRISOURCE ELECTRONICS CO., LTD. All rights reserved.